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Abstract. A new approach is applied to the one-dimensional Anderson model by using a two-
dimensional Hamiltonian map. For a weak disorder this approach allows for a simple derivation
of correct expressions for the localization length both at the centre and at the edge of the energy
band, where standard perturbation theory fails. Approximate analytical expressions for strong
disorder are also obtained.

1. Introduction

Recently, in [1], treating one-dimensional (1D) tight-binding models with diagonal disorder
in terms of classical Hamiltonian maps was suggested. This approach has been successfully
used in the description of delocalized states in the so-called dimer model [2], as well as
for the Kronig–Penney model [3]. In this paper we show that even for the standard 1D
Anderson model, this approach allows us to obtain new analytical results and reproduce
known results in a more transparent way, by making reference to the properties of the
dynamics of the noisy Hamiltonian map into which the model is transformed.

As indicated in [1, 2], the discrete stationary Schrödinger equation

ψn+1+ ψn−1 = (εn + E)ψn (1)

with εn standing for the diagonal potential andE for the energy of an eigenstate, can be
written in the form of a two-dimensional (2D) Hamiltonian map

xn+1 = xn cosµ− (pn + Anxn) sinµ

pn+1 = xn sinµ+ (pn + Anxn) cosµ.
(2)

Here, the variables(pn, xn) play the role of the momentum and the position of a linear
oscillator subjected to linear periodic delta kicks with the periodT = 1. The amplitudeAn
of the kicks depends on time according to the relationAn = −εn/ sinµ. For the Anderson
model the distributionP(ε) of the disorder is given byP(ε) = 1/W for |ε| 6 W/2,
with variance〈ε2〉 = σ 2 = W 2/12. Between two successive kicks, the rotation in the
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phase space is given by the eigenstate energy,E = 2 cosµ. In such a representation,
amplitudesψn of a specific eigenstate at siten correspond to positions of the oscillator at
times tn = n and, therefore, the structure of eigenstates can be studied by investigating
the time dependence of the trajectories in the phase space(pn, xn). In particular, localized
states correspond to unbounded trajectories and, vice versa, extended states are represented
by bounded trajectories.

It is convenient to pass to action-angle variables(rn, θn) according to the standard
transformation,x = r sinθ , p = r cosθ . The corresponding map, therefore, has the form

rn+1 = rnDn

sinθn+1 = D−1
n (sin(θn − µ)− An sinθn sinµ)

cosθn+1 = D−1
n (cos(θn − µ)+ An sinθn cosµ)

(3)

where

Dn =
√

1+ An sin(2θn)+ A2
n sin2 θn. (4)

The localization lengthl is defined by the standard relation

l−1 = lim
N→∞

〈
1

N

N−1∑
n=0

ln

∣∣∣∣xn+1

xn

∣∣∣∣ 〉 = 〈ln ∣∣∣∣xn+1

xn

∣∣∣∣〉 (5)

where the overbar represents time average and the brackets represent the average over
different disorder realizations. The contributions tol−1 can be split into two terms

l−1 =
〈
ln

(
rn+1

rn

)〉
+
〈
ln

∣∣∣∣sinθn+1

sinθn

∣∣∣∣〉. (6)

The second term on the r.h.s. is negligible because it is the average of a bounded quantity.
It only becomes important when the first term is also small, i.e. at the band edgeµ ≈ 0.
Thus, apart from this limit, the localization length can be evaluated from the map (3) using
only the dependence of the radiusrn on discrete time. The ratiorn+1/rn is a function only of
the angleθn and not of the radiusrn, thus the computation of the localization length implies
just the average over the invariant measureρ(θ), which is an advantage with respect to
transfer matrix methods. Moreover, sincern+1/rn is positive, there is no need to work with
complex quantities.

In a direct analytical evaluation of (5) one can, therefore, write

l−1 =
∫
P(ε)

∫ 2π

0
ln(D(ε, θ))ρ(θ)dθ dε (7)

whereP(ε) is the density of the (uncorrelated) distribution ofεn, andρ(θ) represents the
invariant measure of the 1D map for the phaseθ , see (3). We use the fact thatρ(θ) does not
depend on the specific sequenceεn, but can depend on the moments ofP(ε), particularly on
its second momentσ 2 (see below). As one can see, the main problem is in the expression
for ρ(θ), which was not found explicitly even in the limit of a weak disorder,An → 0
[4, 5].

2. Weak disorder

By weak disorder we mean thatAn is small. This can be arranged even at the band edge,
where the denominator sinµ of An is also small; thus the disorderεn must go to zero
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faster thanµ (how much faster is determined by the properties of the Hamiltonian map).
Retaining only terms up to O(A2

n) in the map (3) forθn one finds

θn+1 = θn − µ− An sin2 θn + A2
n sin3 θn cosθn mod 2π (8)

which coincides with formula (62) in [4].
The expression (7) forl−1 can be written in the weak disorder limit explicitly,

l−1 = 1

2 sin2µ

∫
ε2P(ε) dε

∫ 2π

0
ρ(θ)( 1

4 − 1
2 cos(2θ)+ 1

4 cos(4θ)) dθ (9)

which is valid over all the spectrum except at the band edge, where the additional
contribution in (6) is present (see below). In fact, standard perturbation theory [6]
corresponds to the assumption thatρ(θ) is constant. Thus, one easily obtains

l−1 = σ 2

8 sin2µ
= W 2

96
(

1− E2

4

) . (10)

This expression was found to work quite well over all energies, but, surprisingly, numerical
experiments [7] showed a small but clear deviation at the band centre. One had to explain
why standard perturbation theory fails at the band centre, while it is correct everywhere else.
Non-standard perturbation theory methods were devised in [4, 5], where the correct value
for l−1 at the band centre was obtained and, moreover, a different scaling with disorder
was discovered at the band edge [5]. However, these methods hide the physical origin
of the discrepancy behind mathematical difficulties. Here we are able, by looking at the
properties of map (8), to understand both the physical nature of the discrepancy at the band
centre and the different scaling at the band edge. Moreover, our derivation is much simpler
mathematically and more straightforward (this can already be seen from the very simple
derivation of expression (10)).

2.1. The band centre

In order to derive analytically the correct expression forl−1 at the band centreE = 0 , one
has to find the exact expression for the invariant probability measureρ(θ). The latter arises
from map (8) specialized to the valueµ = π/2. For vanishing disorder the trajectory is a
period 4, specified by the initial angleθ0. For a weak disorder any orbit diffuses around the
period 4, with an additional drift inθ . Asymptotically, any initial condition gives rise to
the same invariant distribution, which can now be expected to be different from constant.
To find this distribution, we write the fourth iterate of the map (8)

θn+4 = θn + ξ (1)n sin2 θn + ξ (2)n cos2 θn − σ
2

2
sin(4θn) (11)

whereξ (1)n = εn + εn+2 andξ (2)n = εn+1+ εn+3 are uncorrelated random variables with zero
mean and variance 2σ 2. Here, we have neglected in equation (11) mixed terms of the kind
εnεm (m 6= n) and approximated(ξ (1)n )2 and (ξ (2)n )2 by their common variance 2σ 2, which
is meaningful in a perturbative calculation at first order inεn.

Thus, the invariant distribution can be determined analytically in the continuum limit
whereθn+4 − θn is replaced with dθ and the random variablesξ (1)n , ξ (2)n with the Wiener
variables dW1, dW2 with properties

〈dWi〉 = 0

〈dWi dWj 〉 = 2δij σ
2 dt i, j = 1, 2
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obtaining the Ito equation

dθ = dW1 sin2 θ + dW2 cos2 θ − σ
2

2
sin(4θ) dt. (12)

To this we can associate the Fokker–Planck equation [8]

∂P

∂t
(θ, t) = σ 2

2

∂

∂θ
(sin(4θ)P (θ, t))+ σ

2

4

∂2

∂θ2
[(3+ cos(4θ))P (θ, t)]. (13)

The stationary solutionρ(θ) of equation (13), satisfying the conditions of periodicity
ρ(0) = ρ(2π) and normalization

∫ 2π
0 ρ(θ) dθ = 1, is

ρ(θ) =
(

2K

(
1√
2

)√
3+ cos(4θ)

)−1

(14)

whereK is the complete elliptic integral of the first kind. One should note that the
expression for the invariant measure has never been derived before, and it could turn out to
be useful for obtaining observables other thanl−1. Note that solution (14) does not depend
on the strength of the random process.

By inserting formula (14) into (9) atµ = π/2 we find

l−1 = σ 2

8

(
1+

∫ 2π

0
ρ(θ) cos(4θ) dθ

)
= σ 2

(
0 3

4

0 1
4

)2

= W 2

105.2 . . .
. (15)

This result agrees perfectly with the one obtained in [5, 9], although it is derived here
using a different approach, that involves much simpler calculations.

Thouless’ standard perturbation theory result would correspond to neglect the average
of the cos(4θ) term in (15), meaning that the stationary solution (14) is approximated with a
flat distribution. This approximation works well for all energiesE = 2 cosµ, with µ = απ
andα irrational, but does not work for the band centre. Moreover, if one would consider
observables which contain higher harmonics than those present in the formula forl−1 (9),
one would obtain corrections to standard perturbation theory also for other rational values
of α = p/q. In fact, numerical experiments show that the invariant measure for rationals
is modulated with the main periodT = π/q (p and q being prime to each other). The
amplitude of the modulation decreases withq; thus the strongest modification is obtained
for α = 1

2, which corresponds to the band centre. It is clear from formula (8), that the
only energy value for which a contribution owing to the modulations in the measureρ(θ)

is present in the inverse localization lengthl−1, is the band centreα = 1
2. This is because

in equation (9) only second- and fourth-order harmonics must be averaged, and only for
α = 1

2 the fourth harmonic occurs inρ(θ). This is of course only true in the small disorder
limit.

2.2. The band edge

The neighbourhood of the band edge corresponds toµ ≈ 0. If the second-order noisy term
A2
n in the map (8) is replaced by its average, which is the same approximation as we made

in the previous section, the map (8) reduces to

θn+1 = θn − µ+ εn
µ

sin2 θn + δ2

µ2
sin3 θn cosθn mod 2π (16)

where δ2 is the variance of the noiseεn. For vanishing disorder andµ → 0 the orbits
are fixed points. Moving away from the band edge produces a quasiperiodic motion and



Classical representation of the one-dimensional Anderson model 5267

switching on the disorder gives rise to diffusion. Following the procedure of the previous
section (but here we do not have to go to the four-step map), we obtain the corresponding
Fokker–Planck equation

∂P

∂t
(θ, t) = ∂

∂θ

[(
µ− δ2

µ2
sin3 θ cosθ

)
P(θ, t)

]
+ δ2

2µ2

∂2

∂θ2
(sin4 θP (θ, t)). (17)

There are in this case two small quantities: the noiseεn and the distance from the band
edge1 = 2− 2 cosµ ≈ µ2. Below we consider the double limit1 → 0, δ2 → 0. One
can see that, if we keep the ratiok = µ3/δ2 fixed, the timescale of the drift term in (17)
is unique and, moreover, it coincides with the diffusion timescale, being 1/µ. We can thus
rescale timeτ = tµ and obtain the following stationary Fokker–Planck equation,

∂

∂θ
[(k − sin3 θ cosθ)ρ(θ)] + 1

2

∂2

∂θ2
(sin4 θ ρ(θ)) = 0 (18)

which depends only onk . Its solution, with the same normalization and periodicity
conditions as above, is

ρ(θ) = f (θ)

sin2 θ

[
C +

∫ θ

0
dx

2J

f (x) sin2 x

]
(19)

where

f (θ) = exp(2k( 1
3 cot3 θ + cotθ)) (20)

andC, J are integration constants. To makeρ normalizable, constantC must vanish and
J is then fixed by the normalization condition,

J−1 =
√

8π

k2/3

∫ ∞
0

dx
1√
x

exp

(
−x

3

6
− 2k2/3x

)
. (21)

As mentioned in section 1, in the evaluation of the inverse localization length given by (6)
we must now take into account both terms on the r.h.s., thus we arrive at the expression

l−1 =
〈
ln

∣∣∣∣Dn

sinθn+1

sinθn

∣∣∣∣〉. (22)

In the limit of a weak disorder and forµ→ 0 one finds

l−1 = −µ〈cotθn〉 = −2µ
∫ π

0
cotθρ(θ) dθ. (23)

After some straightforward calculations, withµ = (kδ2)1/3, one obtains

l−1 = (δ2)1/3

2

∫∞
0 dx x1/2 exp

(
− x3

6 − 2k2/3x
)

∫∞
0 dx x−1/2 exp

(
− x3

6 − 2k2/3x
) (24)

which coincides with expression (36) in [5]. The limitsk→ 0 andk→∞ are then easily
rederived and coincide with those in [5]. For instance, thek → 0 limit gives the scaling
law

l−1 = 61/3√π
20( 1

6)
(δ2)1/3 = 0.289. . . (δ2)1/3. (25)

It is interesting to observe that a similar scaling law was also found for chaotic billiards
(stadia and oval ones) when looking at the behaviour of the Lyapunov exponent in the
integrable limit [10]. It is quite natural to associate the Lyapunov exponent with the inverse
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localization length, and the geometrical parameter which in billiards measures the distance
from integrability, with the intensity of the disorder

√
δ2 in the Anderson model.

In this section we have seen that the study of the dynamics of the noisy circle map (8)
allows us to derive both the standard Thouless perturbation theory results for the behaviour
of the localization length in the weak disorder limit, and the non-standard corrections to
such a theory both at the band centre and at the band edge. The advantage of our method is
that the derivation of the final formula has a clear physical meaning; moreover, for the band
centre case, the procedure is mathematically more straightforward than those previously
used [4, 5].

3. Strong disorder

As is known, the analytical expression for the localization length was found only in the
limiting cases of a very weak or a very strong disorder. It is interesting that relation (7)
allows us to derive an approximate expression which is also good for quite a large disorder.
Indeed, if the energy is not close to the band edge and the disorder is not very large, one
can expect a strong rotation of the phaseθ . Therefore, the invariant measureρ(θ) can be
approximately taken as constant,ρ(θ) = (2π)−1. For such a disorder, one can explicitly
integrate equation (7), initially over the phaseθ ,

1

4π

∫ 2π

0
ln(1+ A sin(2θ)+ A2 sin2 θ) dθ = 1

2
ln

(
1+ A

2

4

)
A2 = ε2/ sin2µ (26)

and after, over the disorderε,

l−1
w =

1

2

∫
P(ε) ln

(
1+ ε2

4 sin2µ

)
dε = 1

2
ln

(
1+ W 2

16 sin2µ

)
+

arctan
(

W
4 sinµ

)
W

4 sinµ

− 1. (27)

Direct numerical simulations show that this expression gives quite a good agreement with
the data for the disorderW 6 1–3 inside the energy range|E| 6 1.85. Therefore, the above
expression can serve as a generalization of the weak disorder formula (10), since it is also
valid for the relatively strong disorderW ≈ 1. However, for very strong disorderW � 1,
equation (27) gives incorrect results. The reason behind this is that in this case the invariant
measureρ(θ) is strongly non-uniform, hence expression (26) is no longer valid.

Instead, for a stronger disorder, one can use another approach. Note, that for the unstable
region

|E − εn| > 2 (28)

of the one-step Hamiltonian map (2) both eigenvaluesλ(1,2)n are real,

λ(1,2)n = 1
2

(
(E − εn)±

√
(E − εn)2− 4

)
(29)

with λ(1)n λ
(2)
n = 1. Therefore, for stronger disorderW � 1, one can compute the inverse

localization length directly via the largest valueλ+ of these two eigenvalues, by neglecting
the region|E − ε| < 2,

l−1
s = 〈ln |λ+|〉 =

∫
ln
(

1
2

(
x +

√
x2− 4

))
dx = F(z1)+ F(z2). (30)

Here,x = |E − ε| andz1 = W/2+ E, z2 = W/2− E; the functionF is defined by

F(z) = 2

W

(
z ln

(
z+

√
z2− 4

)
−
√
z2− 4− z ln 2

)
. (31)
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This expression fits the data more accurately than the known expression for the localization
length in the limit of a very strong disorder,

l−1
s = ln

W

2
− 1. (32)

4. Concluding remarks

In section 2 we showed how to derive an exact expression for the localization length in
the weak disorder limit, using the properties of a noisy circle map (8). In particular, at
the centre of the energy band, a small correction to the localization length obtained by
standard perturbation theory is needed, owing to the contribution of the fourth harmonics
in the expression for the invariant measureρ(θ) . It is interesting that for other ‘resonant’
values of the energy, the (weak) modulation ofρ(θ) has no influence on the localization
length. However, for quantities other than the localization length, these corrections may be
important. In this sense, the exact expression (14) for the invariant measureρ(θ) obtained
in this paper for a weak disorder, may find important applications.

We would like to point out that the calculation in [5] of the localization length and of
the density of states is performed after shifting the energyE → E + x slightly away from
the ‘resonant’ values, the size of the shift being proportional to the variancex ∼ σ 2 for all
energies except the band edge. It is easy to see that the approach we have used here, also
allows for the derivation of the localization length near the centre of the band. Moreover,
we can also understand why the shift has to be, as in [5], of the order of the variance of
the disorder. In fact, the method is that one should haveAn � x, because, if the shift from
a value of the energy corresponding to a rational value ofα is too large, the orbit becomes
quasiperiodic. In this case the modulation of the invariant measure which results in the
non-trivial contribution to the localization length, is lost.

The method used here works perfectly for models with uncorrelated and finite variance
disorder. However, the Hamiltonian map approach has been originally applied to the dimer
model [2], for which there are strong short-range correlations in the potential. There are
many other models with correlated disorder which are treated by different methods, one
of which is based on the transfer matrix techniques, which also uses 2D maps or the so-
called ‘generalized Poincare map’ [11]. Other well known models, which are treated by
different mapping and transfer matrix techniques, are the Fibonacci Schrödinger operators
(see, for example, the seminal papers [12]). One can indeed expect that the approach
based on equations (3) and (4) can also serve as a starting point for the study of models
with correlated potentials, such as almost periodic potentials, the Fibonacci potential, etc.
Recent results which relate correlations in the potential with the occurence of delocalized
states [13] show the effectiveness of the Hamiltonian map approach.

Finally, it is interesting to note that the 1D map (8) can be compared with the Arnold
map [14]

θn+1 = θn − a + b sinθn mod 2π. (33)

If we approximateA2
n with its average, it is then tempting to associate the parametera

to our parameterµ, and the parameterb to 〈A2
n〉. Although the modulation of the circle

map (8) is a different function, and the noise is added through the term containingAn, our
results show that the structure of the Arnold tongues persists (Arnold tongues are regions
of the parameter space{a, b} where the dynamics is locked on a periodic orbit of period
q, the tongues become increasingly narrow asb is reduced). Indeed, inside the tongue
of the Arnold map any orbit corresponds to a rational rotation numberp/q; outside the
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tongues the motion is quasiperiodic. Trajectories inside the tongues of our model display
periodic motion with an additional diffusion, the periodic motion being responsible for the
modulation of the invariant measureρ(θ). Outside the tongue, the motion in our model is
also quasiperiodic and the invariant measure is flat.
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